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1. Introduction 
 

The Feasible Direction Method (FDM) was first proposed by Zoutendijk [1]. Later Vanderplaats 
et al. [2] implemented the algorithm into a computer code, and applied it on design optimization of space 
truss structures. Since then, FDM has been one of the most popular methods for finite element analysis 
based structural optimization. The concept of maintaining the search inside the feasible domain is found 
practical for engineering application. For decades, researchers have been applying this method on different 
engineering optimization problems. Some researchers also adopted this concept in the Sequential Quadratic 
Programming approach, and developed the Feasible Sequential Quadratic Programming (FSQP) approach 
[3]. 

Belegundu et at [4] used the interior point method to solve the linear programming sub-problem in 
FDM, and reported improvement on the efficiency. Some researchers also focus on improving the 
convergence properties and the generalization of the problem formulation [5,6]. 

During the last few years, there has been publications indicating that the conventional FDM could 
have problems dealing with certain structural optimization problems. The author proposed the cascade 
optimization approach [7], which was a combination of different algorithms. While the cascade approach 
successfully solved these problems, it did require restart from several different optimizers, and the 
computational effort could be enormous. There was no clear guidelines or rules for the combination of 
different optimizers either.  
 

This research focuses on modifying the traditional FDM to integrate with ANSYS and achieve 
better convergence and efficiency properties. It is shown that, the modified algorithm can successfully 
solve the previously published problems which was not possible for traditional FDM. Two numerical 
examples were solved, and the results were compared with the existing publication. 

 
2. The Conjugate Feasible Direction Method 
 

The Method of Feasible Direction can be formulated as [1,2] 
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Where J is the set of currently active constraints which 0=(X)jg . 
This formulation is suitable for the case that the design is inside the feasible domain. For the case that the 
point is infeasible, it needs to be modified as 
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Where Φ  is a very large number. The equations (1) and (2) are for calculating the Feasible 
Usable Direction, and one-dimensional line search is then performed to further improve the design, such 
that 
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Otherwise 
0=μ           (6) 

Here i is the number of consequent infeasible designs points, n is maximum number of conjugate 
gradient modification, which is set to the number of design variables. When i is greater then n, the counter 
is set to zero and the procedure is restarted. Or, whenever the design reaches a feasible point, the procedure 
is also restarted. 1+kS  is calculated by equations (1) and (2), with the modified gradient of the objective 
function as 
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The gradient of the objective function is modified through all the design iterations, and is restarted 
every n iterations. 

 
3.  Stopping Criteria 
 

In Vanderplaats’s implementation of Feasible Direction Method [8], the problem was considered 
to be infeasible (without feasible solution) when certain number of consequent iterations failed to reach a 
feasible design. In this paper, we add some proprietary formulation to better judge the convergence of the 
iteration. This has been proved to be quite efficient and effective in the examples we have tested. Some of 
the examples are listed in this paper.  

 
4.  Numerical Examples 
 

The above mentioned algorithm was implemented and integrated with the commercial finite 
element analysis package ANSYS. Two examples were solved to test the new algorithm. Both examples 
were from the same publication [7].  
 
4.1 Example 1 

This is the test example 2 in the previous publication. Figure 1 shows the configuration of the two-
dimensional truss structure. The structure is fixed to the ground at nodes 1 and 6. 

There are two load cases in this problem, which are listed in Table 1. In additional to the loading 
and the self-weight of the structure, nodes 2 and 4 are applied with point mass of weight 0.1943 pounds, 
and nodes 3 and 5 with point mass of 0.34974 pounds for both load cases. The elastic modulus is 10000 ksi, 
the Poisson’s ratio is 0.3 and the density is 0.1 pound per cubic inch. 
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Load Case Node ID Direction Value (pounds)
1 2 X 60000
1 2 Y 120000
1 3 X 60000
1 3 Y 60000
1 4 X 17500
1 4 Y 12500
1 5 X 17500
1 5 Y 12500
2 2 Y -50000
2 3 Y -25000
2 4 Y -37500
2 5 Y -75000  

 
Table 1 Two Load Cases of Example 1 

 
There are ten design variables in this problem, with each one assigned to the cross-section area of 

one individual member. All design variables have lower bounds of 0.01 square inches, 10000 square inches 
as the upper bounds, and 1.0 square inch as the initial values. The design constraints are shown in Table 2 
for both load cases. The objective is to minimize the total volume of the structure. 

 
Constraint Type Applied Entity Entity ID Lower Bound Upper Bound
Compressive Stress Element All N/A 10000 (psi)
Tensile Stress Element All N/A 10000 (psi)
Shear Stress Element All N/A 10000 (psi)
Displacement (Y) Node 3,4 N/A 2.2 inches
Frequency Mode 1 26 N/A  

Table 2 Design Constraints for Example 1 
 
 The design converges after thirty (30) iterations, with the final volume of 32692.62 cubic inches. 
The final design variables are listed in Table 3. In the original publication, the Feasible Direction Method 
failed to reach a feasible design. 
 

DV Element Value (inch^2)
1 1 56.39
2 2 20.04
3 3 2.08
4 4 5.07
5 5 39.30
6 6 3.18
7 7 27.07
8 8 21.53
9 9 17.65

10 10 6.31  
Table 3 Final Design Variables of Example 1 

 
4.2 Example 2 

This is the test example 9 in the previous publication. Figure 2 shows the configuration of the two-
dimensional truss structure with nodes 1 and 6 fixed to the ground. 

Table 4 lists the two load cases in this problem. Nodes 2 and 4 are applied with point mass of 
weight 0.1943 pounds, and nodes 3 and 5 with point mass of 0.34974 pounds for both load cases, in 
additional to the loading and the self-weight of the structure. The elastic modulus is 10000 ksi, the 
Poisson’s ratio is 0.3 and the density is 0.1 pounds per cubic inch. 
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Load Case Node ID Direction Value (pounds)
1 2 X 60000
1 2 Y 120000
1 3 X 60000
1 3 Y 60000
1 4 X 17500
1 4 Y 12500
1 5 X 17500
1 5 Y 12500
2 2 Y -50000
2 3 Y -25000
2 4 Y -37500
2 5 Y -75000  

 
Table 4 Two Load Cases of Example 2 

 
There are ten design variables in this problem, with each one assigned to the cross-section area of 

one individual member. All design variables have lower bounds of 0.01 square inches, 10000 square inches 
as the upper bounds, and 1.0 square inch as the initial values. The design constraints are shown in Table 5 
for both load cases. The objective is to minimize the total volume of the structure. 

 
Constraint Type Applied Entity Entity ID Lower Bound Upper Bound
Compressive Stress Element All N/A 10000 (psi)
Tensile Stress Element All N/A 10000 (psi)
Shear Stress Element All N/A 10000 (psi)
Displacement (Y) Node 3,4 N/A 2.2 inches
Frequency Mode 1 26 N/A  

 
Table 5 Design Constraints for Example 2 

 
 The design converges after fifty-three (53) iterations, with the final volume of 52436.20 cubic 
inches. The final design variables are listed in Table 6. In the original publication, the Feasible Direction 
Method failed to reach a feasible design. 
 

Element Value (inch^2)
1 33.58
2 11.49
3 1.05
4 2.82
5 24.73
6 0.66
7 18.08
8 19.63
9 4.01

10 8.68  
 

Table 6 Final Design Variables of Example 2 

 
5. Conclusion 
 
  Modification to the conventional Feasible Direction Method is discussed. Special attention was 
paid to re-use the original algorithm but improve the convergence properties. The examples show that the 
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proposed modification is able to achieve the feasible solution which is not possible for the original 
algorithm. The optimizer was combined with the existing finite element analysis package, and applied on 
daily design task. Further investigation is currently ongoing for basic mathematical properties of the new 
algorithm. 
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Figure 1 Structural Configuration of Example 1 

1 2

3

45

6

7

8

9

10

X

Y

360�

360�

360�

1 2 3

456

 

Figure 2 Structural Configuration of Example 2 


