Using Explicit FE Analysis for Structural Analysis of Impact: From Simple Calibrations to Very Complicated Models

Shen-Yeh Chen; MAY2000

Honeywell

31-00000 Page 1 V0000-1 Honeywell Proprietary

OUTLINE

- FAA Debris Mitigation Phase 1 Project (1998)
- After-Project Activity
- Real-world Application Examples
- Further Goal and Plans

FAA Debris Mitigation Phase 1 Project (1998)

Background

- Joint effort of Honeywell (AlliedSignal) ,Boeing, Pratt & Whitney and Lawrence Livermore National Laboratory (LLNL) in 1998.
- Honeywell was under the subcontract to LLNL.

Goal

- Accurate prediction of the effect of uncontained engine debris on aircraft structures.
- Calibrate LL-DYNA3D to match simple specimen test result.
- Understand different material models in LL-DYNA.
- Explore and understand the characteristic of LL-DYNA3D.

Tasks

Lab Experiment

- Simple drop test on specimens.
- Two specimen geometry, 2 materials (AI 2024 & Ti 6-4), various drop height
- Numerical Experiment (LL-DYNA3D)
 - Modeled to simulate the test conditions and geometry
 - Use different material models for the same test
- Post-test activities
 - Head-to-head comparison between test results and LL-DYNA3D
 - Observations, conclusions and recommendations.

Geometry and The Model (1)

Geometry 1 : Thick 120 Degree Arc Specimen; Symmetric Model

Geometry and The Model (2)

Geometry 2 : Thin 120 Degree Arc Specimen; Symmetric Model

Numerical Experiment

- 2 Material Models
 - Material 24 (Piecewise-linear-plasticity)
 - John-Cook Model
- 3 Scale Factors for Stress-Strain Curve of Each Model
 - -0.9, 1.0, 1.1
- Totally 6 Numerical Simulation on Each Geometry / Material type.

Observation, Comparison and Conclusion

Material Model

- Johnson-Cook model was not better than the static piecewise linear plasticity model.
- Scale factors had very little effect.

Correlation Between Test and Numerical Simulation

- Penetration properties : matched well
- Final deformed shape : matched well
- Displacement VS time: matched well.
- Velocity VS time : matched OK
- Strain VS time: too much noise. Difficult to compare.

Others

DYNA seemed to be always on the conservative side.

Example Data from the Test (1)

Example Data from the Test (2)

Thick Ti Specimen. Displacement VS Time (Bounced Back)

Activity After the FAA Project

Strategy

- Calibrate analysis tools with existing result.
- Predicting test using analysis tools.
- Familiar with the analysis tool by understanding the hard science behind the algorithms and the theory.
- Building up knowledge-based database and standard process flow.

Goal - Toward Complicated Modeling Techniques

- Build in-house pre-processor : integrate with the existing package.
- Model all necessary parts, and capture interaction between them.
- Overcome the numerical instability issue.

General Experience on the Explicit FEA

- Too many options under each item, but none of them general enough.
- Not Well-Documented.
- Limited Existing Experience.
- Numerical Instability for Complicated Models.

Experience - Fan Blade-Out

Parts Modeled

- Containment
- Case
- Front Frame
- Bearing
- Dummy inertia and mass

Purpose

- Provide guide line for design of containment.
- To test the modeling capability.
- To test how much the program can handle
- To test how much detail is necessary
- Simulation Result (see the animation).

Experience - Tri-Hub Burst Containment

Parts Modeled

All major parts

Purpose

- Understand the possible failure mode of tri-hub burst, and prevent it.
- Understand the reason of failure.
- Optimize the containment system.
- Simulation Result (see the animation).

TI AGO TO

Experience - Tri-Hub Burst Containment

- Parts Modeled
 - All major parts
- Purpose
 - Predict/match the test result.
 - Provide design guide line for the containment system.
- Simulation Result (see the animation).

Experience - Crashworthiness Optimization

Challenges

- An almost whole new research area just began active recently.
- Instability of the explicit FEA tool is difficult to handle.
- Intensive computational time.

Achievement

- Successfully apply numerical optimization techniques to some problems.
- Sizing optimization provide 20% to 30% weight reduction against the imperial formula.
- Matched well with the test.

Current Capability

- High Confidence on Most of the Containment System Hub-Burst/Fan Blade-out Event.
- High Confidence on Capturing Complicated Interactions Between Parts (Usually Considered Very Difficult).
- Experience on Reverse Engineering for Existing Events (Usually Considered Very Difficult).
- Able to Model Some Details (Usually Considered Very Difficult).
- Able to Debug Numerical Instability (Usually Considered Difficult).
- Robust Internal Standard Process and Growing Inhouse Program Libraries.

 Honeywell

Further Plans and Goals

- More Types of Material Failure Modeling (Ex., Brittle, Composite...)
- Extend to More Disciplines and Physical Phenomena.
- Post-Impact Simulation.
- Shaping Optimization.
- Hardware/Material Defects.
- Reverse Engineering.
- Better Interface (Pre- and Post-Processing).

Further Contact Information

 Shen-Yeh Chen, Honeywell Engines & Systems, Structures Department, Phoenix, Arizona

• Phone (602)231-4887

• Fax (602)231-3018

Email Shen-Yeh.Chen@Honeywell.com